146 research outputs found

    Non-LTE Abundances of Magnesium, Aluminum and Sulfur in OB Stars Near the Solar Circle

    Get PDF
    Non-LTE abundances of magnesium, aluminum and sulfur are derived for a sample of 23 low-v \sin i stars belonging to six northern OB associations of the Galactic disk within 1 kpc of the Sun. The abundances are obtained from the fitting of synthetic line profiles to high resolution spectra. A comparison of our results with HII region abundances indicates good agreement for sulfur while the cepheid abundances are higher. The derived abundances of Mg show good overlap with the cepheid results. The aluminum abundances for OB stars are significantly below the cepheid values. But, the OB star results show a dependence with effective temperature and need further investigation. The high Al abundances in the cepheids could be the result of mixing. A discussion of the oxygen abundance in objects near the solar circle suggests that the current mean galactic oxygen abundance in this region is 8.6-8.7 and in agreement with the recently revised oxygen abundance in the solar photosphere. Meaningful comparisons of the absolute S, Al and Mg abundances in OB stars with the Sun must await a reinvestigation of these elements, as well as the meteoritic reference element Si, with 3D hydrodynamical model atmospheres for the Sun. No abundance gradients are found within the limited range in galactocentric distances in the present study. Such variations would be expected only if there were large metallicity gradients in the disk.Comment: 3 figures, accepted for publication in A&A, needs aa.st

    Surface abundances of light elements for a large sample of early B-type stars - IV. The magnesium abundance in 52 stars - a test of metallicity

    Full text link
    From high-resolution spectra a non-LTE analysis of the MgII 4481.2 A feature is implemented for 52 early and medium local B stars on the main sequence (MS). The influence of the neighbouring line AlIII 4479.9 A is considered. The magnesium abundance is determined; it is found that log e(Mg) = 7.67 +- 0.21 on average. It is shown that uncertainties in the microturbulent parameter Vt are the main source of errors in log e(Mg). When using 36 stars with the most reliable Vt values derived from OII and NII lines, we obtain the mean abundance log e(Mg) = 7.59 +- 0.15. The latter value is precisely confirmed for several hot B stars from an analysis of the MgII 7877 A weak line. The derived abundance log e(Mg) = 7.59 +- 0.15 is in excellent agreement with the solar magnesium abundance log e_sun(Mg) = 7.55 +- 0.02, as well as with the proto-Sun abundance log e_ps(Mg) = 7.62 +- 0.02. Thus, it is confirmed that the Sun and the B-type MS stars in our neighbourhood have the same metallicity.Comment: 9 pages, 6 figures. Has been accepted for publication at MNRA

    Projected Rotational Velocities and Stellar Characterization of 350 B Stars in the Nearby Galactic Disk

    Full text link
    Projected rotational velocities (vsini) are presented for a sample of 350 early B-type main sequence stars in the nearby Galactic disk. The stars are located within ~1.5 kpc from the Sun, and the great majority within 700 pc. The analysis is based on high-resolution spectra obtained with the MIKE spectrograph on the Magellan Clay 6.5-m telescope at the Las Campanas Observatory in Chile.Spectral types were estimated based on relative intensities of some key line absorption ratios and comparisons to synthetic spectra. Effective temperatures were estimated from the reddening-free Q index, and projected rotational velocities were then determined via interpolation on a published grid that correlates the synthetic full width at half maximum of the He I lines at 4026, 4388 and 4471 A with vsini. As the sample has been selected solely on the basis of spectral types it contains an selection of B stars in the field, in clusters, and in OB associations. The vsini distribution obtained for the entire sample is found to be essentially flat for vsini values between 0-150 km/s, with only a modest peak at low projected rotational velocities. Considering subsamples of stars, there appears to be a gradation in the vsini distribution with the field stars presenting a larger fraction of the slow rotators and the cluster stars distribution showing an excess of stars with vsini between 70 and 130 km/s. Furthermore, for a subsample of potential runaway stars we find that the vsini distribution resembles the distribution seen in denser environments, which could suggest that these runaway stars have been subject to dynamical ejection mechanisms.Comment: 38 pages, 11 figures. Complete sample table. AJ accepte

    Radial velocity measurements of B stars in the Scorpius-Centaurus association

    Full text link
    We derive single-epoch radial velocities for a sample of 56 B-type stars members of the subgroups Upper Scorpius, Upper Centaurus Lupus and Lower Centaurus Crux of the nearby Sco-Cen OB association. The radial velocity measurements were obtained by means of high-resolution echelle spectra via analysis of individual lines. The internal accuracy obtained in the measurements is estimated to be typically 2-3 km/s, but depends on the projected rotational velocity of the target. Radial velocity measurements taken for 2-3 epochs for the targets HD120307, HD142990 and HD139365 are variable and confirm that they are spectroscopic binaries, as previously identified in the literature. Spectral lines from two stellar components are resolved in the observed spectra of target stars HD133242, HD133955 and HD143018, identifying them as spectroscopic binaries.Comment: accepted for publication in A&

    Chemical abundances of fast-rotating massive stars. I. Description of the methods and individual results

    Full text link
    Aims: Recent observations have challenged our understanding of rotational mixing in massive stars by revealing a population of fast-rotating objects with apparently normal surface nitrogen abundances. However, several questions have arisen because of a number of issues, which have rendered a reinvestigation necessary; these issues include the presence of numerous upper limits for the nitrogen abundance, unknown multiplicity status, and a mix of stars with different physical properties, such as their mass and evolutionary state, which are known to control the amount of rotational mixing. Methods: We have carefully selected a large sample of bright, fast-rotating early-type stars of our Galaxy (40 objects with spectral types between B0.5 and O4). Their high-quality, high-resolution optical spectra were then analysed with the stellar atmosphere modelling codes DETAIL/SURFACE or CMFGEN, depending on the temperature of the target. Several internal and external checks were performed to validate our methods; notably, we compared our results with literature data for some well-known objects, studied the effect of gravity darkening, or confronted the results provided by the two codes for stars amenable to both analyses. Furthermore, we studied the radial velocities of the stars to assess their binarity. Results: This first part of our study presents our methods and provides the derived stellar parameters, He, CNO abundances, and the multiplicity status of every star of the sample. It is the first time that He and CNO abundances of such a large number of Galactic massive fast rotators are determined in a homogeneous way.Comment: accepted for publication by A&

    Radial abundance gradients in the outer Galactic disk as traced by main-sequence OB stars

    Get PDF
    Using a sample of 31 main-sequence OB stars located between galactocentric distances 8.4 - 15.6 kpc, we aim to probe the present-day radial abundance gradients of the Galactic disk. The analysis is based on high-resolution spectra obtained with the MIKE spectrograph on the Magellan Clay 6.5-m telescope on Las Campanas. We used a non-NLTE analysis in a self-consistent semi-automatic routine based on TLUSTY and SYNSPEC to determine atmospheric parameters and chemical abundances. Stellar parameters (effective temperature, surface gravity, projected rotational velocity, microturbulence, and macroturbulence) and silicon and oxygen abundances are presented for 28 stars located beyond 9 kpc from the Galactic centre plus three stars in the solar neighborhood. The stars of our sample are mostly on the main-sequence, with effective temperatures between 20800 - 31300 K, and surface gravities between 3.23 - 4.45 dex. The radial oxygen and silicon abundance gradients are negative and have slopes of -0.07 dex/kpc and -0.09 dex/kpc, respectively, in the region 8.4≤RG≤15.68.4 \leq R_G \leq 15.6\,kpc. The obtained gradients are compatible with the present-day oxygen and silicon abundances measured in the solar neighborhood and are consistent with radial metallicity gradients predicted by chemodynamical models of Galaxy Evolution for a subsample of young stars located close to the Galactic plane.Comment: Accepted for publication in the A&

    Pristine CNO abundances from Magellanic Cloud B stars II. Fast rotators in the LMC cluster NGC 2004

    Full text link
    We present spectroscopic abundance analyses of three main-sequence B stars in the young Large Magellanic Cloud cluster NGC 2004. All three targets have projected rotational velocities around 130 km/s. Techniques are presented that allow the derivation of stellar parameters and chemical abundances in spite of these high v sin i values. Together with previous analyses of stars in this cluster, we find no evidence among the main-sequence stars for effects due to rotational mixing up to v sin i around 130 km/s. Unless the equatorial rotational velocities are significantly larger than the v sin i values, this finding is probably in line with theoretical expectations. NGC 2004/B30, a star of uncertain evolutionary status located in the Blue Hertzsprung Gap, clearly shows signs of mixing in its atmosphere. To verify the effects due to rotational mixing will therefore require homogeneous analysis of statistically significant samples of low-metallicity main-sequence B stars over a wide range of rotational velocities.Comment: 12 pages, 5 figures, 2 tables; accepted for publication in ApJ (vol. 633, p. 899

    The Projected Rotational Velocity Distribution of a Sample of OB stars from a Calibration based on Synthetic He I lines

    Full text link
    We derive projected rotational velocities (vsini) for a sample of 156 Galactic OB star members of 35 clusters, HII regions, and associations. The HeI lines at λλ\lambda\lambda4026, 4388, and 4471A were analyzed in order to define a calibration of the synthetic HeI full-widths at half maximum versus stellar vsini. A grid of synthetic spectra of HeI line profiles was calculated in non-LTE using an extensive helium model atom and updated atomic data. The vsini's for all stars were derived using the He I FWHM calibrations but also, for those target stars with relatively sharp lines, vsini values were obtained from best fit synthetic spectra of up to 40 lines of CII, NII, OII, AlIII, MgII, SiIII, and SIII. This calibration is a useful and efficient tool for estimating the projected rotational velocities of O9-B5 main-sequence stars. The distribution of vsini for an unbiased sample of early B stars in the unbound association Cep OB2 is consistent with the distribution reported elsewhere for other unbound associations.Comment: Accepted for publication in The Astronomical Journa

    The first chemical abundance analysis of K giants in the inner Galactic disc

    Full text link
    The elemental abundance structure of the Galactic disc has been extensively studied in the solar neighbourhood using long-lived stars such as F and G dwarfs or K and M giants. These are stars whose atmospheres preserve the chemical composition of their natal gas clouds, and are hence excellent tracers of the chemical evolution of the Galaxy. As far as we are aware, there are no such studies of the inner Galactic disc, which hampers our ability to constrain and trace the origin and evolution of the Milky Way. Therefore, we aim in this study to establish the elemental abundance trend(s) of the disc(s) in the inner regions of the Galaxy. Based on equivalent width measurements in high-resolution spectra obtained with the MIKE spectrograph on the Magellan II telescope on Las Campanas in Chile, we determine elemental abundances for 44 K-type red giant stars in the inner Galactic disc, located at Galactocentric distances of 4-7\,kpc. The analysis method is identical to the one recently used on red giant stars in the Galactic bulge and in the nearby thin and thick discs, enabling us to perform a truly differential comparison of the different stellar populations. We present the first detailed elemental abundance study of a significant number of red giant stars in the inner Galactic disc. We find that these inner disc stars show the same type of chemical and kinematical dichotomy as the thin and thick discs show in the solar neighbourhood. The abundance trends of the inner disc agree very well with those of the nearby thick disc, and also to those of the Bulge. The chemical similarities between the Bulge and the Galactic thick disc stellar populations indicate that they have similar chemical histories, and any model trying to understand the formation and evolution of either of the two should preferably incorporate both of them.Comment: A&A Letters, accepte
    • …
    corecore